Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Cybernetics and Information Technologies ; 23(1):125-140, 2023.
Article in English | Web of Science | ID: covidwho-20231878

ABSTRACT

Every country must have an accurate and efficient forecasting model to avoid and manage the epidemic. This paper suggests an upgrade to one of the evolutionary algorithms inspired by nature, the Barnacle Mating Optimizer (BMO). First, the exploration phase of the original BMO is enhanced by enforcing and replacing the sperm cast equation through Levy flight. Then, the Least Square Support Vector Machine (LSSVM) is partnered with the improved BMO (IBMO). This hybrid approach, IBMO-LSSVM, has been deployed effectively for time-series forecasting to enhance the RBF kernel-based LSSVM model since vaccination started against COVID-19 in Malaysia. In comparison to other well-known algorithms, our outcomes are superior. In addition, the IBMO is assessed on 19 conventional benchmarks and the IEEE Congress of Evolutionary Computation Benchmark Test Functions (CECC06, 2019 Competition). In most cases, IBMO outputs are better than comparison algorithms. However, in other circumstances, the outcomes are comparable.

2.
4th International Conference on Sustainable Technologies for Industry 4.0, STI 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2321434

ABSTRACT

SARS-CoV-2 is an infection that affects several organs and has a wide range of symptoms in addition to producing severe acute respiratory syndrome. Millions of individuals were infected when it first started because of how quickly it travelled from its starting location to nearby countries. Anticipating positive Covid-19 incidences is required in order to better understand future risk and take the proper preventative and precautionary measures. As a result, it is critical to create mathematical models that are durable and have as few prediction errors as possible. This study suggests a unique hybrid strategy for examining the status of Covid-19 confirmed patients in conjunction with complete vaccination. First, the selective opposition technique is initially included into the Grey Wolf Optimizer (GWO) in this study to improve the exploration and exploitation capacity for the given challenge. Second, to execute the prediction task with the optimized hyper-parameter values, the Least Squares Support Vector Machines (LSSVM) method is integrated with Selective Opposition based GWO as an objective function. The data source includes daily occurrences of confirmed cases in Malaysia from February 24, 2021 to July 27, 2022. Based on the experimental results, this paper shows that SOGWO-LSSVM outperforms a few other hybrid techniques with ideally adjusted parameters. © 2022 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL